Using NAADSM 3.1 Part 1: Basic operation & disease characteristics

NAADSM Development Team <u>http://www.naadsm.org</u>

Purpose and design

- NAADSM is a framework for the development of epidemiologic simulation models
 - It is not just one model!
- NAADSM is designed to evaluate potential strategies for control of animal diseases
- NAADSM is:
 - A state-transition model
 - A Monte Carlo simulation model
 - A spatially explicit model
 - Were our Reed-Frost models spatially explicit? (*Hint*. what is assumed about contact among individuals in a Reed-Frost model?)

Capabilities & limitations

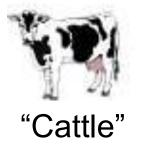
- NAADSM is designed for contagious diseases of livestock
- NAADSM is currently best suited for foreign animal diseases, where a pathogen is introduced into a previously unexposed population
- *NAADSM* is not currently intended for:
 - Chronic or endemic diseases
 - Fatal diseases
 - Vertically or sexually transmitted diseases
 - Vector-borne diseases
 - Diseases in highly mobile populations (*e.g.*, migratory wildlife)
- NAADSM does not simulate population dynamics (*e.g.*, births, deaths, business failures, *etc.*)

Overview of simulation parameters

- Herd-based animal populations
 - Herds may be classified by user-defined production types
 - Disease states
 - NAADSM is a state transition model
- Disease transmission among herds
 - By direct or indirect contact among herds
 - By aerosol spread of the disease agent
- Detection and tracing
- Control measures
 - Quarantine
 - Destruction/stamping out
 - Vaccination
- Direct costs of disease control

Populations for NAADSM

- Most of the disease models we've seen so far deal with individuals within populations
- NAADSM is a herd-based model: it deals with individual herds (units) within a population of herds (units)
 - *NAADSM* simulates the spread of disease among herds
 - This is an important (and potentially confusing) abstraction used in NAADSM-based models
- NAADSM populations are static: the number and size of herds do not change*
 - *Except by destruction of a herd: more on that later today
- Each herd is characterized by:
 - The number of animals in the herd
 - Its location in space
 - Expressed as a latitude/longitude point
 - *Preview*: locations and distances are important for disease spread
 - Its production type (more on this in a minute)


NAADSM demo (I): Getting started

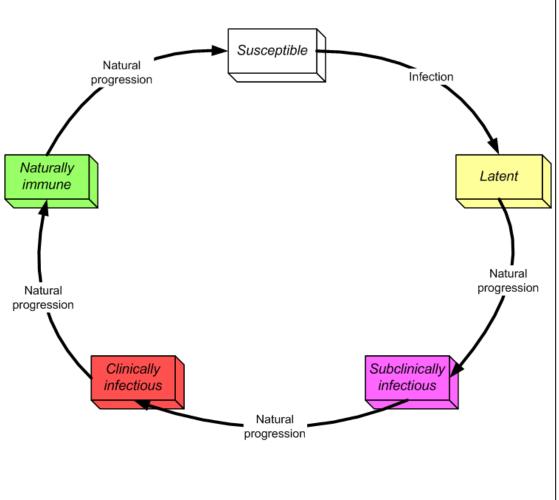
- Starting the NAADSM/PC application
- Glancing quickly at the menu options
- Creating a copy of the sample scenario file
- Viewing the map of herd locations
- Selecting a single herd to view its characteristics

Production types in NAADSM

- Every herd (or unit) has a production type
- Production types are used to define:
 - The duration of disease in an infected herd
 - The potential for spread from infected herds to susceptible herds
 - Control measures that will be applied to herds
- Production types might be characterized by:
 - Species or purpose of animals in a herd
 - Herd size
 - Management practices
 - Level of intensity of animal management
 - Level of biosecurity
 - Any combination of the above
- The user defines production types that are appropriate for the question to be addressed by the model

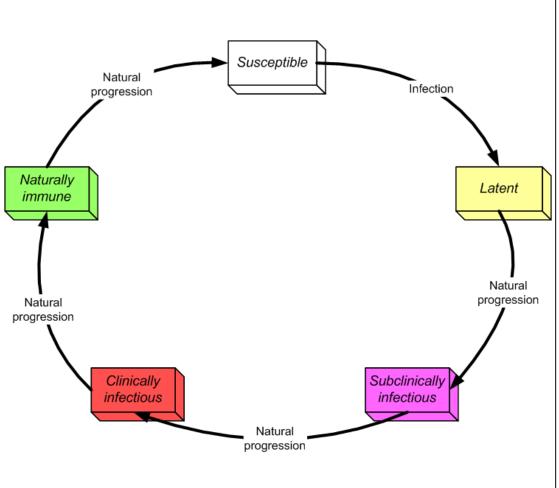
Some possible production types

"Mixed cattle and sheep"

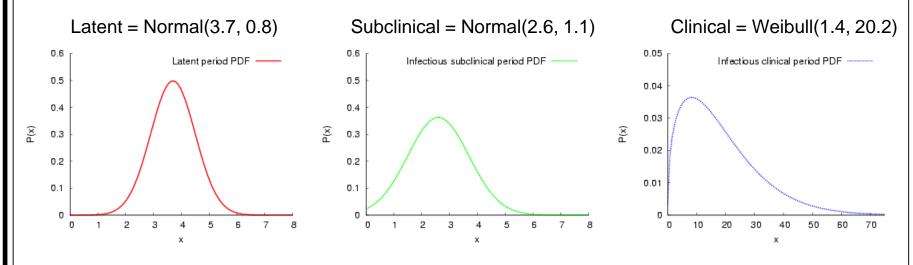

- Other possibilities:
 - Dairies
 - Extensive cow/calf farms
 - Swine operations with fewer than 100 animals
 - Nursery swine operations
 - Swine operations with high biosecurity
 - Feedlots
 - Backyard flocks
 - Commercial egg layer flocks

NAADSM demo (II): Production types

- Viewing herds of particular production types on the map
- Creating and renaming production types
- Viewing the list of units (herds) in the scenario


Disease states in NAADSM: The basics

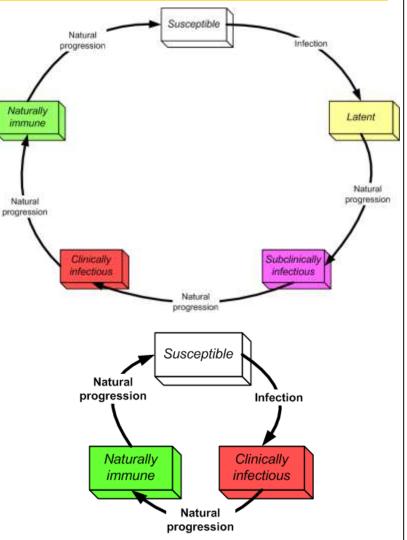
- Each herd (unit) has a disease state
- Upon infection, a herd will enter a predictable cycle
 - How herds become infected will be covered in the next talk
- Probability density functions describe the duration (in days) of each state on a *herdlevel* basis
 - The user specifies these probability density functions


Disease state definitions :A reminder from Monday

- Latent herds (units) are infected, but not yet shedding the disease agent
- Subclinically infectious herds are infected and infectious, but not yet showing clinical signs of disease
- Clinically infectious units are infected, infectious, and showing clinical signs of disease

Disease state durations: An example (I)

Suppose that we use the following probability density functions for the different infected periods of a particular production type:

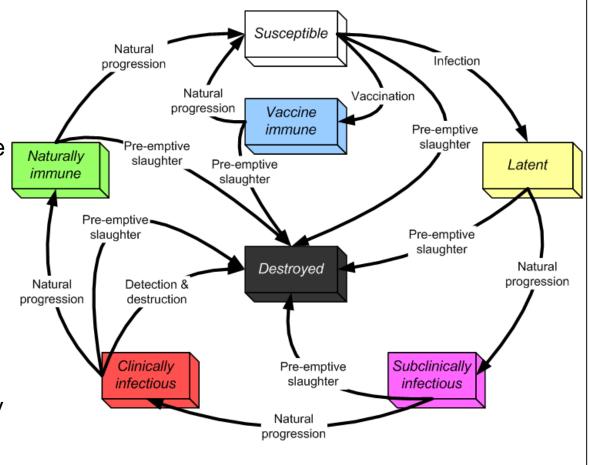

How will NAADSM use these distributions for infected herds of this type?

Disease state durations: An example (II)

- To determine duration of disease states we sample from our input distributions for each new infected herd
- Results for three infected herds:
 - Latent for 4 days, subclinical for 3 days, clinical for 31 days
 Total = 38 days infected
 - Latent for 5 days, subclinical for 1 day, clinical for 15 days
 Total = 21 days
 - Latent for 3 days, subclinical for 1 day, clinical for 63 days
 Total = 67 days

Disease states in *NAADSM*: Intermediate use

- Unless control measures are applied, this cycle will continue for as long as there is at least one infected herd in the population
- Disease states can be skipped by specifying a duration of 0 days
- Permanent immunity could be simulated by specifying a very long duration for the naturally immune stage
 - (Would it ever make sense to do this?)



NAADSM demo (III): Disease states

- Viewing the "Disease options" window
 - We'll talk more about within-unit prevalence option in a few minutes
- Viewing the "Production type settings for disease" window
- Viewing, editing, and creating probability density functions

Disease states in *NAADSM*: More intermediate use

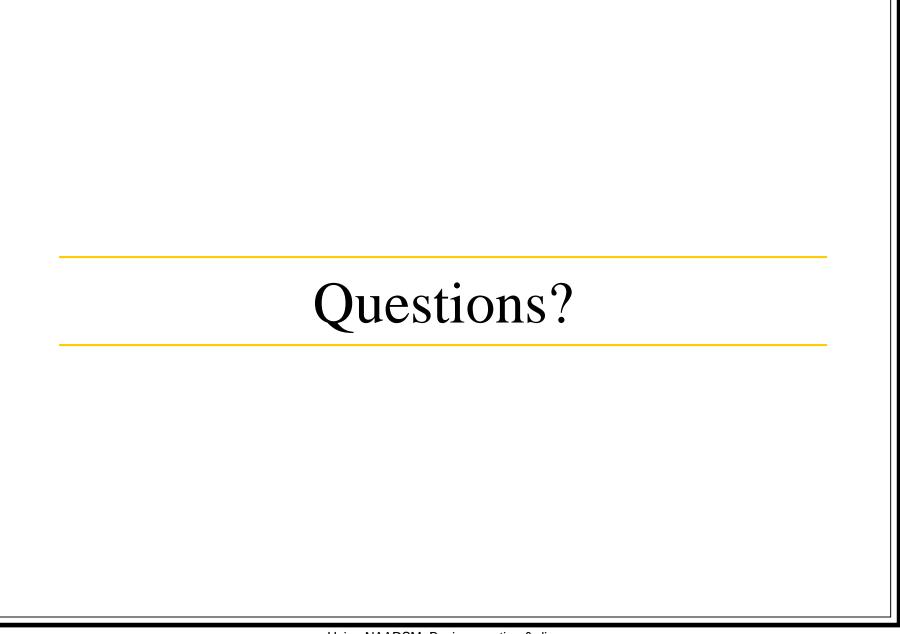
- Destruction of a herd (unit) can interrupt the normal state transition cycle
 - Herds with any disease state may be destroyed
 - Destroyed herds are never repopulated during a simulation
- Vaccination of a herd can short-circuit the normal state transition cycle
 - Only susceptible herds are affected by vaccination

Using NAADSM: Basic operation & disease characteristics

NAADSM demo (IV): Running NAADSM

- Running several iterations of the sample scenario
- Watching "daily" changes to herd status as simulated outbreaks progress
- Observing epidemic curves for simulated outbreaks in the "Summary of 1 iteration" window

Use of disease states in NAADSM


The disease state of a herd determines:

- Whether the herd can transmit disease
- Whether the herd can be infected
- Whether infection in the herd can be detected
- These will be covered in more detail in subsequent talks...

Summary

- NAADSM is a state transition model that supports up to 7 disease states
- The duration of most disease states is determined stochastically from probability density functions
 - "Susceptible" and "destroyed" are exceptions
- The disease state of a herd determines how disease is spread from or to the herd

More on this in the next session

The NAADSM development team (past and present)

- Animal Population Health Institute at Colorado State University
 - Shaun Case
 - Ashley E. Hill
 - Aaron Reeves
 - Mo D. Salman
 - Francisco Zagmutt-Vergarra
- Canadian Food Inspection Agency
 - Caroline M. Dubé
- Ontario Ministry of Agriculture, Food, and Rural Affairs
 - W. Bruce McNab

- United States Department of Agriculture
 - Claudia I. Cartwright
 - Barbara A. Corso
 - Conrad Estrada
 - Kim Forde-Folle
 - Mark A. Schoenbaum
 - Ann H. Seitzinger
- University of Guelph Department of Computer and Information Science
 - Neil Harvey
 - Deb Stacey

Recommended reading

- Harvey, N., Reeves, A., Schoenbaum, M.A., Zagmutt-Vergara, F.J., Dubé, C., Hill, A.E., Corso, B.A., McNab, W.B., Cartwright, C.I., Salman, M.D., 2007. The North American Animal Disease Spread Model: A simulation model to assist decision making in evaluating animal disease incursions. *Preventive Veterinary Medicine* 82: 176– 197. (A complete, although terse, description of the NAADSM framework)
- Hill, A., and Reeves, A. 2006. User's Guide for the North American Animal Disease Spread Model, 2nd ed. Fort Collins, Colorado: Animal Population Health Institute, Colorado State University. Available at <u>http://www.naadsm.org</u> (An indispensable, exhaustive, and delightfully humorous guide for NAADSM users. The 'must read' book of the summer!)